Close packing of rods on spherical surfaces.

نویسندگان

  • Frank Smallenburg
  • Hartmut Löwen
چکیده

We study the optimal packing of short, hard spherocylinders confined to lie tangential to a spherical surface, using simulated annealing and molecular dynamics simulations. For clusters of up to twelve particles, we map out the changes in the geometry of the closest-packed configuration as a function of the aspect ratio L/D, where L is the cylinder length and D the diameter of the rods. We find a rich variety of cluster structures. For larger clusters, we find that the best-packed configurations up to around 100 particles are highly dependent on the exact number of particles and aspect ratio. For even larger clusters, we find largely disordered clusters for very short rods (L/D = 0.25), while slightly longer rods (L/D = 0.5 or 1) prefer a global baseball-like geometry of smectic-like domains, similar to the behavior of large-scale nematic shells. Intriguingly, we observe that when compared to their optimal flat-plane packing, short rods adapt to the spherical geometry more efficiently than both spheres and longer rods. Our results provide predictions for experimentally realizable systems of colloidal rods trapped at the interface of emulsion droplets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J un 1 99 7 Rods Near Curved Surfaces and in Curved Boxes

We consider an ideal gas of infinitely rigid rods near a perfectly repulsive wall, and show that the interfacial tension of a surface with rods on one side is lower when the surface bends towards the rods. Surprisingly we find that rods on both sides of surfaces also lower the energy when the surface bends. We compute the partition functions of rods confined to spherical and cylindrical open sh...

متن کامل

Particles Size Distribution Effect on 3d Packing of Nanoparticles Into a Bounded Region

In this paper, the effects of two different Particle Size Distributions (PSD) on packingbehavior of ideal rigid spherical nanoparticles using a novel packing model based on parallelalgorithms have been reported. A mersenne twister algorithm was used to generate pseudorandomnumbers for the particles initial coordinates. Also, for this purpose a nanosized tetragonal confinedcontainer with a squar...

متن کامل

Vesicles in Solutions of Hard Rods Typeset Using Revt E X 1

The surface free energy of ideal hard rods near curved hard surfaces is determined to second order in curvature for surfaces of general shape. In accordance with previous results for spherical and cylindrical surfaces it is found that this quantity is non-analytical when one of the principal curvatures changes signs. This prohibits writing it in the common Helfrich form. It is shown that the no...

متن کامل

Structural investigation of complexes formed by DNA+CTAB and DNA+DDAB and Designing a method to increase salt ions between DNA and the Surfactant rods.

The internal structure of DNA-CTAB and DNA-DDAB is investigated by a Small Angel X- ray Scattering(SAXS) instrument. Hexagonal packing of DNA was observed for DNA complex with CTAB, and for DDABcomplex is observed lamellar structure. Variations in the internal spacing and degree of long-range ordering aredependent on both surfactant type and concentrations of added salt. When we increased the a...

متن کامل

Log-Normal and Mono-Sized Particles’ Packing into a Bounded Region

Many systems can be modeled with hard and various size spheres, therefore packing and geometrical structures of such sets are of great importance. In this paper, rigid spherical particles distributed in different sizes are randomly packed in confined spaces, using a parallel algorithm. Mersenne Twister algorithm was used to generate pseudorandom numbers for initial coordination of particles. Di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 144 16  شماره 

صفحات  -

تاریخ انتشار 2016